Extreme Value Laws for Superstatistics

نویسندگان

  • Pau Rabassa
  • Christian Beck
چکیده

We study the extreme value distribution of stochastic processes modeled by superstatistics. Classical extreme value theory asserts that (under mild asymptotic independence assumptions) only three possible limit distributions are possible, namely: Gumbel, Fréchet and Weibull distribution. On the other hand, superstatistics contains three important universality classes, namely χ-superstatistics, inverse χ-superstatistics, and lognormal superstatistics, all maximizing different effective entropy measures. We investigate how the three classes of extreme value theory are related to the three classes of superstatistics. We show that for any superstatistical process whose local equilibrium distribution does not live on a finite support, the Weibull distribution cannot occur. Under the above mild asymptotic independence assumptions, we also show that χ-superstatistics generally leads an extreme value statistics described by a Fréchet distribution, whereas inverse χ-superstatistics, as well as lognormal superstatistics, lead to an extreme value statistics associated with the Gumbel distribution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Labour Productivity Superstatistics

We discuss superstatistics theory of labour productivity. Productivity distribution across workers, firms and industrial sectors are studied empirically and found to obey powerdistributions, in sharp contrast to the equilibrium theories of mainstream economics. The Pareto index is found to decrease with the level of aggregation, i.e., from workers to firms and to industrial sectors. In order to...

متن کامل

Log-amplitude statistics for Beck-Cohen superstatistics.

As a possible generalization of Beck-Cohen superstatistical processes, we study non-Gaussian processes with temporal heterogeneity of local variance. To characterize the variance heterogeneity, we define log-amplitude cumulants and log-amplitude autocovariance and derive closed-form expressions of the log-amplitude cumulants for χ(2), inverse χ(2), and log-normal superstatistical distributions....

متن کامل

Superstatistics of hydro - climatic fluctuations and interannual ecosystem productivity

[i] Ecosystems driven by hydro-climatic fluctuations at different time scales can be interpreted as non-equilibrium dynamical systems. Here we explore the propagation of daily and interannual rainfall fluctuations through the soilplant system using the theory of superstatistics. With the help of simplified stochastic models of rainfall, we show how interactions of daily and interannual rainfall...

متن کامل

Generalized entropies and the transformation group of superstatistics

Superstatistics describes statistical systems that behave like superpositions of different inverse temperatures β, so that the probability distribution is pðεiÞ ∝ ∫ 0 fðβÞe−βεi dβ, where the “kernel” fðβÞ is nonnegative and normalized [∫ fðβÞdβ 1⁄4 1]. We discuss the relation between this distribution and the generalized entropic form S 1⁄4 ∑i sðpiÞ. The first three Shannon–Khinchin axioms are ...

متن کامل

Superstatistics in hydrodynamic turbulence

Superstatistics is a ‘statistics of a statistics’ relevant for driven nonequilibrium systems with fluctuating intensive parameters. It contains Tsallis statistics as a special case. We show that probability density functions of velocity differences and accelerations measured in Eulerian and Lagrangian turbulence experiments are well reproduced by simple superstatistics models. We compare fits o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Entropy

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2014